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Abstract.13

Background: Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer’s disease (AD). Performing
multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the
performance of the diagnosis models.
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Objective: This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance
and redundancy of regional biomarkers and improve the AD classification accuracy.
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Methods: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 722 participants with three modalities, including
florbetapir-PET, flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture
the redundancy and complementarity of the predictors and develop a feature ranking approach. This was followed by evaluating
the capability of single-modal and multimodal biomarkers in predicting the cognitive stage.
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Results: Although amyloid-� deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded
a higher early-stage classification F1-score (65.4%) compared to amyloid-� PET (63.3%) and MRI (63.2%). The SVC
multimodal scenario with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively.
When age and risk factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)]
framework helped to interpret the classification results for different biomarker categories.
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Conclusion: The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal
datasets and enhance model performance. The AT(N) biomarker framework can help to explore the misclassified cases by
revealing the relationship between neuropathological biomarkers and cognition.
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INTRODUCTION 33

With the aging of society, Alzheimer’s disease 34

(AD) is bound to affect more people, with projec- 35

tions suggesting that there will be over 13.8 million 36
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people with dementia by 2050 in the US [1]. A37

misfolding and abnormal deposition of specific pro-38

teins in the brain is recognized as the pathological39

cause for the initiation and progression of this neu-40

rodegenerative disease. AD is irreversible, causing41

significant memory and behavioral issues. Therefore,42

researchers are keen to identify its earliest manifes-43

tations, even at the pre-symptomatic stage, to plan44

for and more effectively take advantage of emerg-45

ing early treatment and therapeutic interventions.46

Thus, effective diagnosis of AD and its early stage,47

i.e., mild cognitive impairment (MCI), specifically48

using computer-aided methods, has attracted exten-49

sive attention in recent years [2–14].50

Several well-established biomarkers associated51

with the pathology of AD have been identified and52

studied by researchers for decades. Magnetic reso-53

nance imaging (MRI) as a structural indicator for54

brain atrophy, measures of tau and amyloid-� (A�)55

from cerebrospinal fluid (CSF), and A� accumu-56

lation from regional positron emission tomography57

(PET) and hypometabolism from fluorodeoxyglu-58

cose (FDG) PET are among the most remarkable59

biomarkers for AD. In recent years, several tau PET60

tracers such as 11C-PBB3, 18F-AV1451, and 18F-61

THK have been developed, which enable in vivo62

visualization of tau pathology in brain regions. Tau63

imaging can help to facilitate disease staging and64

diagnosis. Compared to A�, tau is a delayed event65

and is more related to cognitive decline [15, 16]. The66

interrelatedness of these two biomarkers has been67

extensively studied [17–21]. Moreover, the tempo-68

ral ordering of biomarkers provides added insight69

into AD staging. Based on such biomarkers order-70

ing, a disease progression score has been defined in71

[22]. Biomarkers of A� plaque, i.e., amyloid PET72

and CSF A�, represent the initiating events of AD73

that happen during the cognitively normal stage. On74

the other hand, biomarkers of neurodegeneration,75

including MRI, FDG-PET, and CSF total tau, are76

later events that correlate with cognitive decline [23].77

Besides the pathological biomarkers, there are other78

contributing variables in AD diagnosis, such as risk79

factors (age, gender, and APOE �4) and protective80

factors (cognitive reserve, brain resilience, and resis-81

tance). The variability of the factors, including age,82

gender, APOE �4 genotype, and year of education83

between AD subtypes, can be used to address the84

disease heterogeneity to some extent.85

In an effort to present a biological definition of86

AD, biomarkers are pathologically grouped into three87

classes. This scheme is known as AT(N) with “A”,88

“T”, and “(N)” representing A�, tau, and neurode- 89

generation biomarker groups, respectively. Based 90

on this system, each biomarker class is labeled as 91

positive or negative through defined cut-points to 92

determine the overall pathology status [24]. The 93

AT(N) framework attempts to reflect the interactions 94

between neuropathological changes (characterized 95

by biomarkers profiles) and the cognitive stage (deter- 96

mined clinically through symptoms). This framework 97

can serve as a helpful supplementary tool when inter- 98

preting the results of a computer-aided diagnosis 99

system. 100

While each neuroimaging modality provides dis- 101

tinct features and measures for AD diagnosis, their 102

fusion consolidates their unique strengths when using 103

effective machine learning and deep learning mod- 104

els [25–29]. In retrospect, few multimodal studies 105

include tau imaging for computer-aided diagnosis of 106

AD. 107

An initial step required for the machine learning- 108

based diagnosis is the optimal data representation 109

through a feature extraction procedure. Feature 110

extraction methods can be categorized as voxel- 111

based, region of interest (ROI)-based, and patch- 112

based techniques. Among them, ROI-based features 113

are more common due to their consistency and lower 114

dimensionality [25, 30]. In AD studies, the sam- 115

ple size is typically small, and the dimensionality 116

of voxel-based and even ROI-based features is high. 117

This makes it difficult for the machine learning model 118

to generalize to unseen data while avoiding over- 119

fitting. Therefore, to reduce the model complexity 120

and enhance its performance, removing redundant 121

and extraneous features by selecting the most infor- 122

mative ones is a critical step [31–34]. Also, feature 123

selection can be used to understand the process 124

under study by identifying disease-prone regions 125

that contribute best to AD diagnosis and disease 126

progression. 127

In some feature selection methods, the selection 128

process is embedded in the learning algorithm, and 129

the model accuracy or loss is then used to evaluate 130

different subsets of features. With the use of these 131

methods, an optimized combination of features can 132

be achieved; however, these approaches are subject to 133

the curse of dimensionality. Another category of tech- 134

niques known as filter methods uses a criterion such as 135

Pearson’s correlation, ANOVA, t-test, chi-square test, 136

and mutual information, among others, to evaluate 137

the many features and determine their relevance to the 138

target variable [35, 36]. In [31], the similarity between 139

samples was computed, and their consistency metrics 140
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have been used for multimodal feature selection.141

In [37], a feature selection method was developed142

based on the receiver operating characteristic (ROC)143

curve for each volumes-of-interest (VOI) where the144

classification true positive rate is plotted versus the145

false positive rate using only that specific VOI. In146

[38], the linear discriminant analysis and locality147

preserving projection learning methods have been148

combined with a sparse regression model to deter-149

mine discriminative features. Most filter methods use150

univariate metrics in which features are evaluated151

independently, and the interaction between them is152

often overlooked. Also, filter methods focus mainly153

on the linear relationship between variables, and154

any nonlinear dependencies are neglected. Concern-155

ing the associations between variables, there exists156

some research endeavors for incorporating the corre-157

lation and redundancy of the features. However, due158

to the nature of the used metrics, these approaches159

are mainly unsupervised, and the detected relation-160

ships are not necessarily connected to the target161

variable and may not be valuable concerning the clas-162

sification problem. Another group of methods uses163

embedded regularization for sparse feature learning164

in which the interaction of all variables is consid-165

ered [39–41]. However, in these models, the variable166

selection is less interpretable, limiting the flexibil-167

ity and ability to further explore the discriminative168

features.169

In this study, we aimed to implement a multimodal170

feature fusion approach for the machine learning-171

based diagnosis of AD. A feature selection technique172

was proposed based on the multivariate mutual infor-173

mation (MMI) criterion. We attempted to handle174

feature redundancy and complementarity in a super-175

vised manner where the shared information between176

features is evaluated in terms of its capability in pre-177

dicting the target variable. MRI, Amyloid-� PET, and178

tau PET data from the ADNI cohort were used in179

this multimodal study. The effect of modalities on180

the disease staging was evaluated both individually181

and combined. Machine learning models, including182

support vector machine, random forest (RF), and183

eXtreme gradient boosting (XGB), were used for the184

classification of different stages of the disease and185

the effect of the proposed feature selection method on186

the classification performance was evaluated. Lastly,187

the AT(N) biomarkers framework was used to inves-188

tigate the interconnection between the biomarkers’189

profile and the cognitive stage to assess the classi-190

fication performance degradation due to biomarker191

insufficiency.

MATERIALS AND METHODS 192

Participants 193

The clinical data used for our analysis were 194

obtained from the Alzheimer’s Disease Neuroimag- 195

ing Initiative (ADNI) database (http://adni.loni.usc. 196

edu). ADNI was launched in 2003 as a public- 197

private partnership, directed by Principal Investigator 198

Michael W. Weiner, MD. The primary objective of 199

ADNI has been to test whether serial MRI, PET, 200

other biological markers, and clinical and neuropsy- 201

chological assessments can be combined to measure 202

the progression of MCI and early AD. For up-to-date 203

information, see http://www.adni-info.org. 204

In this study, the data were collected from 205

three modalities in the ADNI 3 cohort, including 206

amyloid PET (agent: 18F-AV45), tau PET (agent: 18F- 207

AV1451), and MRI. For each participant, all modali- 208

ties have been collected from the same visit. The MRI 209

scan is a T1 weighted image that has gone through 210

preprocessing steps, including gradient wrapping, 211

scaling, B1 correction, and inhomogeneity correc- 212

tion. For the florbetapir and flortaucipir data, four 213

preprocessing steps have been followed, including 214

co-registered dynamic, averaged, standardized image 215

and voxel size, and uniform resolution. T1 MRI scans 216

have been processed through FreeSurfer for skull- 217

stripping and segmentation of cortical and subcortical 218

regions. In the next step, florbetapir and flortau- 219

cipir images have been co-registered to the subject’s 220

MRI from the same visit. Finally, volume-weighted 221

florbetapir and flortaucipir average are defined in 222

each cortical and subcortical region of interest, and 223

regional standardized uptake value ratio (SUVR) is 224

then calculated. More information about the prepro- 225

cessing steps and processing methods can be found 226

at http://ida.loni.usc.edu. The florbetapir (18F-AV45) 227

dataset analysis comprises reference region options 228

of the whole cerebellum, cerebellar grey matter, and 229

brain stem in addition to cortical and summary of 230

SUVR measurements. The participant demographics 231

and Mini-Mental State Examination (MMSE) score 232

for each group (mean and standard deviation) are 233

reported in Table 1. Figure 1 illustrates the distri- 234

bution of average SUVRs (among all regions) for the 235

sample set. Since not all participants have undergone 236

all tests, the dataset contains multiple instances with 237

missing values which are dropped in some scenarios 238

depending on the objective of the analysis. 239

In this study, different types of variables, includ- 240

ing cortical thickness and SUVR values, non-tissue 241

http://adni.loni.usc.edu
http://www.adni-info.org
http://ida.loni.usc.edu
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Table 1
Participant demographics and mini-mental state examination (MMSE) score for different diagnosis groups of the ADNI3 cohort. P-value is

reported between MCI-CN and AD-CN populations

Groups Subject (f/m) Age (y), [p] Education, (y) [p] MMSE, [p]

CN 277 (153/124) 71.80 ± 5.70, [–] 16.67 ± 2.47, [–] 28.63 ± 2.12, [–]
MCI 378 (155/223) 71.26 ± 7.66, [0.179] 16.25 ± 2.61, [0.027] 26.87 ± 4.20, [ < 0.001]
AD 67 (26/41) 73.41 ± 8.78, [0.075] 16.43 ± 2.35, [0.290] 22.37 ± 2.39, [ < 0.001]

Fig. 1. Distribution of the mean value of amyloid-� and tau SUVRs in each disease group for ADNI3 cohort participants; CN, Cognitively
Normal; MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease.

SUVR values, and AD risk factors, were used as242

features for the machine learning algorithm. In the243

preprocessing stage, the feature set is normalized to244

a common scale before feeding it to the classifica-245

tion model. It is worth noting that the SUVR values246

in non-brain areas represent off-target binding by the247

ligand and are not related to AD pathophysiology.248

Such SUVR values could still be potentially bene-249

ficial for the machine learning-based classification250

task despite the fact that they are not interpretable as251

biomarkers of AD.252

Feature selection253

The high dimensionality of multimodal regional254

AD data relative to the sample size can diminish the255

model performance. The purpose of feature selection256

is to find a feature subset that yields an optimal classi-257

fication score. This selection process can also help to258

enhance the generalization ability and interpretabil-259

ity of the model. The objective is to come up with260

a subset of features with minimum size and maxi-261

mum possible information about the class variable.262

This can be achieved by preserving the most rele-263

vant features and dismissing the irrelevant and the264

redundant ones. Redundant features may not neces-265

sarily damage the system’s performance. However, to266

limit the feature space size and complexity, it is ben- 267

eficial to remove the redundant features and keep the 268

complementary ones to maximize the total amount of 269

relevant information. An approach is thus proposed 270

based on multivariate mutual information to measure 271

the relevance and redundancy of the features. 272

To determine the relevance of a feature, univariate 273

filter-based feature selection measures can be used. 274

With such measures, the relationship between each 275

feature and the target variable is evaluated individu- 276

ally. One of the most common criteria for this task is 277

the Pearson correlation coefficient which is a num- 278

ber between [–1, 1], with +1, –1, and 0 representing 279

maximum linear correlation, maximum inverse lin- 280

ear correlation, and no linear correlation between the 281

two variables, respectively. Other univariate criteria 282

include mutual information, ANOVA test, and Chi- 283

squared test, whose performance may vary depending 284

on the type of the input and output variables (continu- 285

ous or categorical variable). Mutual information (MI) 286

is a powerful statistical metric that measures common 287

information between random variables and is rela- 288

tively robust to the data type. Unlike the correlation 289

measure, MI can also detect nonlinear relationships 290

between variables. Moreover, it can be extended to 291

more than two variables to determine the redun- 292

dancy of multiple variables [34]. In this study, a 293



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

M. Shojaie et al. / Alzheimer’s Disease Multimodal Classification 5

methodology is proposed to rank features based on294

pairwise redundancy and complementarity of fea-295

tures using MMI.296

MI between two discrete random variables is
defined as:

I (x; y) =
∑

x

∑
y
p (x, y) .log

p (x, y)

p (x) p (y)
(1)

where x and y are random variables and p(.) is the297

probability of a random variable. MI is zero when x298

and y are independent and is positive when there is299

common information between them.300

At first, MI was calculated between each feature
and its target variable. This determines the relevance
of each feature. Next, to incorporate the interaction
of features, MI was calculated between a subset of
features and a target variable as I(S;y), where S is a
subset of features and y is the target. For the case of a
subset of two features (S = {x1,x2}), the relationship
between MI of S and y (I(x1,x2;y)) and MI of each
feature and y (I(x1;y), I(x2;y)) is defined as follows:

I (x1, x2; y) = I (x1; y) + I (x2; y) − I (x1; x2; y)
(2)

where the three terms on the right side can be301

calculated using (1). Based on (2), the amount of302

information that (x1,x2) have about y can be defined303

as the sum of the common information of x1 and304

y (I(x1;y)) plus that of x2 and y (I(x2;y)) minus the305

intersection of the first two terms, which is the com-306

mon information of all three variables x1, x2 and307

y (I(x1;x2;y)). The last term is known as the MMI,308

which determines the shared information between309

multiple variables and is defined as follows:310

I (x1; x2; y) =
∑

x1

∑
x2

∑
y
p (x1, x2, y) . log

p (x1, x2, y)

p (x1) p (x2) p (y)
(3)

311

When MMI is positive, there is redundancy312

between x1 and x2, and the information of a subset313

of them is less than the sum of their individual infor-314

mation. On the other hand, when MMI is negative, x1315

and x2 carry complementary information about y, and316

the information of x1 and x2 combined is more than317

the sum of their individual information. Therefore, in318

(2), the interaction of features is considered through319

the MMI term, which can be treated as a measure of320

redundancy and complementarity.321

To rank the features, a metric is defined for each
feature based on the MI between that feature and the
target variable and the redundancy or complementar-
ity of that feature with every other feature. This new

metric is as defined as follows:

FSi = I (xi; y) − α
∑

j
j /= i

I
(
xi; xj; y

)
(4)

where FSi is the score of the ith feature, with � being a 322

constant. The first term is the MI of the ith feature and 323

the target variable, and the second term represents the 324

pairwise interaction (redundancy/complementarity) 325

of the ith feature and all other features, which can 326

consist of positive and negative elements. When � is 327

zero, the interaction term is ignored, and the feature 328

scores only depend on the individual scores. As � 329

increases, a larger weight is assigned to the redun- 330

dancy term so that the overall score of redundant 331

features decreases while that of complementary ones 332

increases. To select the value of coefficient �, the clas- 333

sification experiment was conducted using different 334

values of �, and the optimal value was determined 335

as the one associated with the highest classification 336

score. The feature score (FS) was then calculated 337

for all features, and the top features were deter- 338

mined accordingly. To evaluate different scenarios, 339

first, the top features were detected for each individ- 340

ual modality to find the prominent regions based on 341

each biomarker. Then, the process was repeated for 342

the multimodal data so that the top regions in terms 343

of all modalities combined were identified. Also, the 344

importance of specific regions and biomarkers at var- 345

ious stages of the disease was evaluated. In the next 346

step, to prove the effectiveness of the new metric 347

for feature selection, multiple classification scenarios 348

were implemented. 349

Classification 350

In recent years, artificial intelligence has proved 351

to be a promising tool for diagnosing and pre- 352

dicting the trajectory of the disease. In this study, 353

machine learning architectures were used for AD 354

diagnosis at different stages using single-modality 355

and multimodality data. It is worth noting that 356

before implementing the classification task, the fea- 357

ture space was scaled in the range between zero and 358

one. The scaling estimator was built solely based 359

on the training data (to avoid data leakage from 360

the test set) and was applied to each feature indi- 361

vidually in both training and test sets so that each 362

feature is in the [0–1] interval. The models used for 363

the classification task include support vector clas- 364

sifier (SVC), RF of decision trees, and XGB. SVC 365

is a classifier that attempts to categorize data points 366
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Fig. 2. Structure of the used data for the classification process.

based on their classes in a high-dimensional space367

by a hyperplane. By mapping the data points onto368

a higher-dimensional space, SVC can classify non-369

linearly separable data using nonlinear kernels like370

polynomial and radial basis function. To alter the bias371

and variance of the model, the regularization param-372

eters C and gamma of the SVC can be adjusted. The373

parameters control the trade-off between the training374

accuracy and model generalization ability for the test-375

ing stage. As the next model, the RF algorithm relies376

on the key concept of decision trees and leverages377

the ensembling and voting mechanisms to enhance378

the classification and prediction accuracy while pre-379

venting overfitting. The model parameters include380

the number of trees, sample size, maximum depth381

of each tree, and the maximum number of features382

used for each split. XGB, on the other hand, is a383

learning technique that consists of an ensemble of384

weak learners, such as decision trees, that operate in385

a sequence where each subsequent learner attempts to386

correct the errors of the previous learner. The number387

of trees, the maximum depth of a tree, and the sample388

size for each step are among the XGB control param-389

eters. To evaluate the models and also to optimize390

the models parameters, k-fold cross-validation was391

used. In order to prevent data leakage between these392

two tasks, the nested cross-validation technique was393

implemented. An inner 5-fold cross-validation was394

performed for hyperparameter optimization, while395

an outer 6-fold cross-validation was used for valida-396

tion and reporting the model scores. The structure397

of the data for the classification task is shown in398

Fig. 2. Multiple single modality and multimodality399

experiments were performed for binary and multi-400

class classification. A similar set of experiments were401

then implemented after applying the proposed feature402

selection approach. Finally, to include the risk and403

protective factors in the analysis, covariates including404

age, APOE �4, gender, and education level were 405

integrated into the feature set, and the classification 406

process was repeated. 407

Interconnection between AD neuropathology and 408

cognitive stage 409

In this study, MRI and PET scans have been used 410

for automatic classification and prediction of the cog- 411

nitive stage. However, the classification task remains 412

challenging due to the heterogeneity of the disease. A 413

critical factor that can degrade the model performance 414

is the lack of sufficient biomarkers that are infor- 415

mative enough to perfectly determine the cognitive 416

stage. We tried to explore the available biomarkers 417

to investigate the performance limitation imposed by 418

the dataset. 419

Due to biomarker insufficiency, cognitive symp- 420

toms are not perfectly linked to AD neuropathological 421

changes measured by available biomarkers. Sim- 422

ply put, symptoms are not specific to AD, nor do 423

abnormal AD biomarkers guarantee the existence of 424

symptoms. Neuropathologic changes in AD are deter- 425

mined by postmortem inspections and measured in 426

vivo through biomarkers. Clinical AD, on the other 427

hand, is defined based on the cognitive stage and is 428

measured through the symptoms’ manifestation. A 429

percentage of individuals with clinical AD do not 430

have postmortem evidence of AD pathology. 431

Similarly, some individuals in the cognitively nor- 432

mal elderly group show signs of AD pathology at 433

autopsy. This may result in false-negative and false- 434

positive outcomes in our classification task. To study 435

this effect, we investigated the available biomark- 436

ers and their corresponding cognitive stage based on 437

the AT(N) biomarker profile system introduced in 438

[24]. The AT(N) framework of the National Insti- 439

tute on Aging-Alzheimer’s Association is an effort 440
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Table 2
Interaction between clinically diagnosed cognitive stage and AT(N) biomarkers [24]

Cognitive stage (Clinical diagnosis)

Cognitively Normal Mild Cognitive Impairment Dementia

Biomarker
Profile

A–T–N– Normal AD biomarkers, and CN Normal AD biomarkers with MCI Normal AD biomarkers with
dementia

A+T–N– AD pathologic change, and CN AD pathologic change with MCI AD pathologic change with
dementia

A+T+N– Preclinical AD with no cognitive
impairment

AD biomarkers with MCI AD biomarkers with dementia
A+T+N+
A+T–N+ AD and concomitant suspected

non-AD pathologic change, and
CN

AD and concomitant suspected
non-AD pathologic change with
MCI

AD and concomitant suspected
non-AD pathologic change with
dementia

A–T+N– non-AD pathologic change, and
CN

non-AD pathologic change with
MCI

non-AD pathologic change with
dementiaA–T–N+

A–T+N+

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; A, Aggregated amyloid-�; T, Aggregated tau; N,
Neurodegeneration; +/−, The value of a biomarker summary measure is higher/lower than the cut-point.

toward investigating the interaction between AD neu-441

ropathology and cognitive status. In this biomarker442

grouping system, the biomarkers are classified into443

three categories based on their underlying pathologic444

process. The label “A” represents amyloid PET and445

CSF A� as biomarkers of cortical A�, “T” denotes tau446

PET and CSF phosphorylated tau (P-tau) as biomark-447

ers of fibrillar tau, and neurodegeneration is labeled as448

“(N)” measured by CSF total tau (T-tau), FDG PET,449

and MRI.450

The imaging and CSF biomarkers are expressed451

in continuous values; however, in certain situations452

such as research studies and treatment trials, a binary453

grouping of biomarkers (positive/negative) may be454

preferred. To achieve such types of positive/negative455

results, appropriate cut-points are defined for each456

biomarker. For florbetapir (AV45) SUVR cut-points,457

we adopted the values reported in [42]. Summary458

SUVR is defined as the weighted average of florbe-459

tapir uptake in lateral temporal and parietal, lateral460

and medial frontal, anterior, and posterior cingulate461

normalized by the uptake in the whole cerebellum.462

Then, a cut-point of 1.11 is applied to this summary463

SUVR, which is equivalent to the 95th percentile464

of the biomarker distribution of the young control465

normal group. For tau PET SUVRs and MRI corti-466

cal thickness, the cut-points determined in [43] by467

Clifford R. Jack Jr. were used. A tau PET sum-468

mary SUVR is defined based on the volume-weighted469

average of the SUVR in inferior temporal, middle470

temporal, entorhinal, amygdala, parahippocampal,471

and fusiform ROIs normalized to the cerebellar crus472

grey. For the tau PET summary SUVR, cut-points473

of 1.19 and 1.32 are defined based on the speci-474

ficity method (the 95th percentile of the biomarker475

distribution of the young control normal individu- 476

als) and the accuracy of impaired versus age-matched 477

control normal method, respectively. From MRI, 478

the surface-area weighted average is determined for 479

the cortical thickness in entorhinal, inferior tempo- 480

ral, middle temporal, and fusiform regions. Cortical 481

thickness cut-points of 2.69 and 2.57 mm are selected 482

respectively based on specificity and accuracy meth- 483

ods which were also used in the tau PET case. 484

Based on the defined cut-points, various biomarker 485

profiles can be identified in the AT(N) framework. 486

These biomarker grouping and their relationship with 487

the cognitive stages are shown in Table 2. As seen 488

in the table, the A–T–N– group represents indi- 489

viduals with normal AD biomarkers. Participants 490

with amyloid positive but normal tau pathology 491

and neurodegeneration biomarkers (A+T–N–) are 492

tagged as “Alzheimer’s pathologic change.” Those 493

with evidence of amyloid deposition along with 494

tau pathology and regardless of neurodegeneration 495

condition (A+T+N+/–) are considered to belong to 496

the “preclinical Alzheimer’s disease” group. Amy- 497

loid negative individuals with abnormal tau or 498

neurodegeneration biomarkers (A–T–N+, A–T+N–, 499

A–T+N+) are defined as “suspected non-Alzheimer’s 500

pathology change”. Finally, the A+T–N+ category 501

represents simultaneous “Alzheimer’s pathologic 502

change” and “non-AD neurodegeneration”. Although 503

the biomarker signature carries some information 504

about the cognition status, each biomarker profile can 505

belong to any cognitive stage. 506

The AT(N) framework combined with the 507

described cut-points were used to establish the bio- 508

marker profile groups for our dataset. We then 509

identified the sub-groups that are more susceptible 510



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

8 M. Shojaie et al. / Alzheimer’s Disease Multimodal Classification

Fig. 3. Regional feature importance scores for amyloid PET SUVRs (AV45) and tau PET SUVRs (AV1451). The feature scores were
determined using four filter-based feature selection measures, namely, SelectKBest (SKB), ExtraTreesClassifier (ETC), correlation coefficient
(Corr), and mutual information (MI), as shown in the vertical axis. For each region shown in the horizontal axis, one feature is defined for
amyloid SUVR and one for tau SUVR. The value of feature scores is normalized between 0 and 1 and is illustrated by the color intensity
of their corresponding box in the figure. Features with larger scores are more informative for the classification task. Based on the results,
amyloid SUVRs including entorhinal, inferior parietal, inferior temporal, amygdala, and bankssts and tau SUVRs including frontal pole and
accumbens are among the top features.

to misclassification and explored their underlying511

causes. This is done by focusing on those groups512

in which the biological AD biomarkers cannot be513

an informative representation of the cognitive stage.514

For instance, individuals with normal AD biomarkers515

but clinical AD diagnosis are likely to be classified516

as non-AD class. Also, subjects with abnormal AD517

biomarkers but no cognitive impairment might be518

identified as AD class by the model. The number519

of subjects in each AT(N) group was calculated for520

our dataset, and the probability of occurring false521

positive and false negative outcomes is measured,522

representing the contribution of biomarker shortage523

to the classification error.524

RESULTS525

Feature selection results526

Various feature selection approaches were imple-527

mented under multiple classification scenarios. At528

first, conventional univariate criteria and meth-529

ods, including Correlation coefficient, SelectKBest,530

ExtraTreesClassifier, and univariate mutual informa-531

tion have been implemented. For the amyloid and532

tau PET modalities and the three-class classification533

case (CN/MCI/AD), the heatmap of the feature scores534

based on the abovementioned metrics is shown in535

Fig. 3. A total number of 110 features (two features536

per region for left and right hemispheres) have been537

included in this analysis. As seen, entorhinal, inferior538

parietal, inferior temporal, amygdala, and bankssts539

are among the top features based on tau PET, while540

Fig. 4. Heatmap of multivariate mutual information (MMI)
between pairwise amyloid and tau SUVR values given the class
variable (y), calculated using equation (3). The diagonal elements
represent the amount of information that each individual feature
carries about the target variable. Brighter colors correspond to a
higher amount of information. For non-diagonal elements, a posi-
tive MMI value is an indication of redundant information between
two features, which corresponds to darker colors in the heatmap.
On the other hand, complementary features have a negative MMI
represented by brighter colors in the heatmap. As seen, more pair-
wise redundancy (more dark non-diagonal elements) exists for
inside-modality features compared to between-modality features.

regions like frontal pole and accumbens are more 541

prominent based on amyloid PET. 542

Next, the proposed MMI-based feature selection 543

method was implemented. Using equation (3), pair- 544

wise MMI was calculated for all features, and the 545

results are presented as a heatmap in Fig. 4. Again, 546
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Fig. 5. Heatmap of top 30 features based on the FS-scores for different values of parameter �. For � = 0, the redundancy term is ignored, and
the features are selected solely based on their relevance. In this case, dark non-diagonal elements of the heatmap represent more pairwise
redundancy between features. For higher values of �, feature redundancy is decreased, and bright non-diagonal elements show less pairwise
feature redundancy and more complementarity.

Table 3
Top features (amyloid-� and tau SUVRs) based on the proposed feature ranking method. The SUVR values were ranked using the calculated
feature scores, and the top amyloid-� and tau SUVR features are presented. Top features are more informative for the AD diagnosis

classification task

Tau PET Left entorhinal Left vessel Third ventricle
Left amygdala Left inferior temporal Right entorhinal

Left middle temporal Right amygdala Right inferior temporal

Amyloid-� PET Left medial orbitofrontal Left rostral anterior cingulate Right medial orbitofrontal
Left accumbens area Left hippocampus CC anterior

Left frontal pole Right accumbens area CC mid anterior
Left lateral ventricle Right lateral ventricle CC posterior

Left inf lat vent Right frontal pole

the CN/MCI/AD case based on the amyloid and tau547

PET modalities is considered here. In the heatmap,548

the diagonal elements show the amount of informa-549

tion that each feature has about the target variable.550

The brighter the color of a square, the more relevant551

is that particular feature. The non-diagonal elements552

show the degree of redundancy or complementarity553

of feature pairs concerning the target variable. The554

darker the color, the higher is the redundancy, and555

the lower is the complementarity.556

To select the most relevant and informative fea-557

tures, both the individual scores (diagonal) and the558

mutual scores (non-diagonal) should be considered559

as described in the Methods section. The FS were560

calculated using equation (4). As indicated earlier,561

for each feature, the summation of the second term562

of the equation represents the interaction of that fea-563

ture with every other feature. The summation terms564

are equivalent to each row or column of the heatmap565

of Fig. 4. The heatmap of the top 30 features based566

on the proposed FS-score is illustrated in Fig. 5 for567

different values of �. For � = 0, the score of a given568

feature solely depends on the feature’s relevance. As569

seen in Fig. 5, in this case, top features include highly570

relevant (brighter diagonal) but possibly redundant571

features (darker non-diagonal) at the same time. For572

higher values of �, the redundancy term comes into573

play so that more redundant features are removed 574

from the list of the top features. This results in select- 575

ing features with brighter non-diagonal elements (less 576

redundant), as shown in Fig. 5 for higher values of 577

�. This is a trade-off between feature relevance and 578

redundancy, which is controlled by adjusting param- 579

eter �. It is worthwhile to add that too large values of 580

α should be avoided since, in this situation, valuable 581

features might be dropped only because they have 582

some dependency on other features. For the specific 583

case of � = 0.005, top features (amyloid-� and tau 584

SUVRs) are listed in Table 3. Finally, the resulting 585

scaled feature scores for the amyloid and tau SUVRs 586

for different stages of the disease are represented in 587

Fig. 6. 588

Classification results 589

After data preprocessing, exploratory data analy- 590

sis, and feature selection, classification models (SVC, 591

RF, and XGB) were implemented for MCI, and 592

AD diagnosis and their performance were compared. 593

Since the data is unbalanced, various evaluation met- 594

rics, including precision, recall, and F1-score, are 595

reported besides accuracy. Experiments were con- 596

ducted using different modalities, both separately 597

and combined. Amyloid PET, tau PET, and MRI 598
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Fig. 6. Regional feature importance scores for amyloid PET SUVR (AV45) and tau PET SUVR (AV1451) based on the proposed feature
selection method. As a supervised approach, the features scoring procedure was performed for four different classification tasks, including
CN/MCI/AD, CN/MCI, MCI/AD, and CN/MCI/AD as shown in the vertical axis. For each region shown in the horizontal axis, one feature
is defined for amyloid SUVR and one for tau SUVR. The value of feature scores is normalized between 0 and 1 and is illustrated by the color
intensity of their corresponding box in the figure. Features with larger scores are more informative for the classification task. For tau SUVRs,
entorhinal and amygdala were among the top features for all classification tasks, while pallidum and hippocampus were more informative
for the CN/MCI case, and inferior parietal, inferior temporal, precuneus, and precentral for the MCI/AD case. On the other hand, for amyloid
SUVRs, top features include frontal pole for all classification tasks, inferior lateral ventricle for the CN/MCI, and medial orbitofrontal, pars
triangularis, and rostral anterior cingulate for the MCI/AD.

Table 4
Classification results before feature selection for three single-modality scenarios including amyloid PET SUVRs (tracer: AV45), tau PET
SUVRs (tracer: AV1451), and MRI (cortical thickness) and two multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs”
and “amyloid PET SUVRs & tau PET SUVRs & MRI cortical thickness”. Three machine learning models, including SVC, RF, and XGB

were used, and four scores, including accuracy, precision, recall, and F1-score are reported

CN/MCI/AD CN/MCI MCI/AD CN/AD

Modality Classifier ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1

amyloid-� PET SVC 60.2 52.6 49.7 50.4 68.9 65.2 61.6 61.9 74.9 66.2 64 64.8 88.6 78.8 76.3 77.4
RF 58.6 46.4 44.5 44.5 66.9 62.4 60.1 60.3 75.9 67.6 64 65.2 89.6 81.3 76.9 78.8
XGB 63.5 54.2 50.8 51.4 67.2 62.8 60.4 60.7 75.4 66.7 63 64.1 88.3 78.4 74.4 76.1

tau PET SVC 64.7 57.8 48.5 49.9 69.4 65.9 62.1 62.5 75.4 66.4 60.9 62 90.9 86.6 75.9 79.9
RF 62.9 55.3 48.9 50.4 68.2 64.1 61 61.3 79.7 74.4 67.2 69.2 90.6 85.4 75.7 79.4
XGB 63.1 55.8 49.3 50.9 69.2 65.5 62.8 63.2 77.5 70.4 69.2 69.7 90.6 85.4 75.7 79.4

MRI SVC 59.5 52.5 50.2 51.1 69.7 67.4 62.1 62.3 75.4 65.1 63.1 63.9 91.6 85.3 79.9 82.3
RF 63.3 58.7 50.5 52.1 69 66.4 61.4 61.5 77.5 68.1 62.5 63.9 92.5 88.2 80.5 83.7
XGB 62.6 57.5 50.2 52.2 65.5 61.1 58.8 58.8 78.2 69.5 64 65.5 90.8 83.5 77.6 80.1

Amyloid-� PET
& tau PET

SVC 64.2 56.2 49.9 51.3 67.8 63.7 61.3 61.7 76.5 67.8 62.4 63.7 89.9 82.7 74.9 78
RF 64.9 56.5 50.7 52 71.8 69.5 64.6 65.2 78.6 71.9 65.2 67 91.5 87.3 77.6 81.3
XGB 64.9 64.4 53.5 56.5 67 62.8 61.1 61.4 80.7 75.5 68.8 70.8 91.2 84.8 79.1 81.6

Amyloid-� PET &
tau PET & MRI

SVC 69.3 63 55.3 57.8 73.8 70.6 66.2 67.2 81 74.9 65.4 67.7 91.4 83.5 74.4 77.9
RF 69 61.8 51.7 54.1 78 76.1 71.7 73 78.9 69.9 65.1 66.6 92.6 87.7 76.4 80.6
XGB 68.8 62.9 54.6 57 78.3 78.1 70.5 72.2 78.2 68.5 61.5 63 91 81.4 75.5 78

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ACC, accuracy; PRE, precision; REC, recall; F1,
F1-score; Amyloid-� PET, SUVR values with AV45 tracer; Tau PET, SUVR values with AV1451 tracer; MRI, Cortical thickness.

as single modalities, and combinations of {amyloid599

PET & tau PET}, and combinations of {amyloid600

PET & tau PET & MRI}, as multimodal scenar-601

ios were investigated, and the results are presented602

in Table 4. In terms of machine learning models,603

generally, SVC yields slightly less accurate scores604

compared to the other two models. The F1-scores of605

the three models for various scenarios can be seen606

in Fig. 7. Among single modality cases, tau PET 607

has slightly higher scores for CN/MCI classification 608

(early stages), and tau PET and MRI have improved 609

results for MCI/AD and CN/AD cases. Multimodal 610

scenarios resulted in enhanced performance in the 611

three-class CN/MCI/AD and CN/MCI cases while 612

not in the MCI/AD case. This is due to the fact that 613

the feature selection has not yet been applied, and 614
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Fig. 7. Classification F1-score before feature selection for the three machine learning models, SVC, RF, and XGB, for different classification
scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and CN/AD; (a) Single modality; tau PET, (b) Multimodality; tau and amyloid PET,
(c) Multimodality; tau and amyloid PET and MRI.

Table 5
Classification results after feature selection for three single-modality scenarios including amyloid PET SUVRs (tracer: AV45), tau PET
SUVRs (tracer: AV1451), and MRI (cortical thickness) and two multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs”
and “amyloid PET SUVRs & tau PET SUVRs & MRI cortical thickness”. Three machine learning models, including SVC, RF, and XGB

were used, and four scores, including accuracy, precision, recall, and F1-score are reported

CN/MCI/AD CN/MCI MCI/AD CN/AD

Modality Classifier ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1 ACC PRE REC F1

amyloid-� PET SVC 62.4 57.9 52.1 53.9 69.7 66.2 62.8 63.3 78.1 71 68.2 69.3 90.9 84.6 78.5 81.1
RF 61.3 52.4 49.6 50.1 68.7 64.8 61.4 61.7 78.1 71.4 65.5 67.1 89.6 81.6 76 78.4
XGB 61.1 52.5 50.7 51.2 65.7 61 59.4 59.7 75.9 67.7 64.7 65.7 89 80.5 73.9 76.6

tau PET SVC 65.3 55.9 53 53.9 71.9 69.6 64.7 65.4 77.5 70.2 66.5 67.8 89 80.9 73.1 76.1
RF 64.9 57.9 50.4 52.1 68.7 64.8 61.9 62.3 79.1 72.9 68.2 69.8 92.2 89.2 79.2 83.1
XGB 64.2 57 52 53.2 68.4 64.5 62.2 62.6 75.9 68.1 66.8 67.3 89.9 83.1 75.4 78.4

MRI SVC 59.5 52.5 50.2 51.1 68.2 64.8 62.8 63.2 76.4 66.8 64.8 65.6 92.1 86.3 80.8 83.2
RF 63.3 56.8 49 50.5 69.2 66.4 62.2 62.4 80.3 73.3 67.4 69.3 92.7 87.6 82.4 84.7
XGB 62 56.8 49.2 51 68.7 65.4 62.8 63.2 79.2 71.2 67.7 69 91 84.6 77.1 80.2

Amyloid-� PET
& tau PET

SVC 67.1 61.7 54.8 56.5 73.8 73.8 65.6 66.4 77 68.8 64.9 66.1 92.5 89.4 79.9 83.6
RF 64.9 59.1 51.6 53.6 72.3 70.2 65.1 65.9 77 68.8 63.4 64.8 91.2 87.7 75.6 80
XGB 64.2 56.4 51.5 52.7 70 66.7 63.7 64.3 75.9 67.1 64.1 65.1 90.6 84.4 76.1 79.4

Amyloid-� PET &
tau PET & MRI

SVC 71.5 66.5 58.5 61.2 75.9 73.6 68.7 70.0 82.4 76.6 69.5 71.8 93.3 88.9 79.4 83.2
RF 70.7 64.3 51.2 53.6 77.7 76.6 70.3 71.8 81.7 76.9 65.9 68.4 90.6 80.5 74 76.7
XGB 69.9 62.9 55 57.3 75.6 73.1 68.5 69.7 80.3 73 65 67 91.8 86.4 73.3 77.9

CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; ACC, accuracy; PRE, precision; REC, recall; F1,
F1-score; Amyloid-� PET, SUVR values with AV45 tracer; Tau PET, SUVR values with AV1451 tracer; MRI, cortical thickness.

thus, in multimodal cases, the feature space is of615

high dimensionality, and the model could not han-616

dle it effectively. This issue is reinvestigated in the617

next section, where the feature selection is applied618

before fitting the models.619

The classification scores with feature selection are620

shown in Table 5. The SVC results have improved621

in most cases, while the RF and XGB results have622

not changed significantly since these two algorithms623

have an embedded feature selection process and are624

not affected substantially by external feature selec-625

tion. Figure 8 shows the feature selection effect on626

SVC and XGB F1-scores for three scenarios. In most627

cases, SVC with feature selection yields the highest628

scores, which proves the effectiveness of the proposed629

feature selection approach. Next, Fig. 9 compares630

the individual modality and multimodality results. 631

In the single modality classification, tau PET has 632

higher scores, specifically in the CN versus MCI 633

case. This proves the effectiveness of tau PET com- 634

pared to amyloid PET and MRI in mild cognitive 635

impairment diagnosis, which conforms with previous 636

studies [21]. Generally, multimodal data enhances the 637

scores, which is more notable when feature selection 638

is applied. 639

To investigate the effect of age, gender, APOE �4, 640

and education on the classification performance, we 641

added them to the model variables and repeated the 642

experiments using the best-performing model and 643

top regional features. Figure 10 presents the classi- 644

fication scores with and without the covariates age, 645

gender, APOE4, and education. In most cases, the 646
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Fig. 8. Classification F1-score before and after feature selection (FS) using two machine learning models, SVC and XGB, for different
classification scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and CN/AD; (a) Single modality; amyloid PET, (b) Multimodality; tau
and amyloid PET, (c) Multimodality; tau and amyloid PET and MRI.

Fig. 9. Classification scores for single-modal and multimodal scenarios after feature selection; (a) Accuracy, (b) Precision, (c) Recall, (d)
F1-score.

Fig. 10. Classification scores with and without the covariates age, gender, APOE4, and education using the SVC model and top selected
features, for classification tasks (a) CN/MCI/AD, (b) CN/MCI, (c) MCI/AD, (d) CN/AD.

classification scores increased. The binary classifi-647

cation cases, MCI/AD and CN/AD, experienced the648

highest performance improvement which can be due649

to the higher interclass variance of covariates such as650

age for these classes. On the other hand, the scores651

for the three-class classification case, CN/MCI/AD,652

remained almost unchanged, which can be due to the653

lower interclass variance of age between the CN and654

MCI classes and also the more complex nature of the655

multiclass classification task.

Biomarker profile grouping 656

The merit of using the National Institute on 657

Aging-Alzheimer’s Association AT(N) framework 658

was examined to address the challenge in ascertaining 659

discrepancies between cognitive stage (determined 660

clinically) and biological AD (determined by the 661

classification model using biomarkers). Biomarker 662

profiles were thus defined based on amyloid/tau/ 663

neurodegeneration (A/T/N) positivity and negativity, 664
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Table 6
Grouping the study participants into AT(N) biomarkers categories
and their corresponding clinically diagnosed cognitive stage (CN,
MCI, and AD). The AT(N) groups are defined using two different
cut-points for each biomarker. Confident cut-points {1.11, 1.32,
2.57} and conservative cut-points {1.11, 1.19, 2.69} were used for
amyloid SUVRs, tau SUVRs, and MRI cortical thickness, respec-
tively. The distribution of subjects shows that in each biomarker
profile specifically for the preclinical AD group (A+T+N– and
A+T+N+), subjects can belong to any of the three cognitive stages,
which is due to the heterogeneity of the disease. This results in a
more challenging classification of the cognitive stage. For the con-
fident cut-points, more subjects are categorized in the A–T–N– and
A+T–N– groups, while for the conservative cut-points, groups with
more positive biomarkers include a larger number of subjects. This
is expected as the confident cut-point case has a larger threshold for
tau SUVR and a smaller threshold for cortical thickness compared

to the conservative cut-point case

Clinically diagnosed cognitive stage

Confident Conservative
cut-points cut-points

CN MCI AD CN MCI AD

A–T–N– 82 38 2 56 23 1
A+T–N– 41 15 5 23 9 2
A+T+N– 9 14 12 22 21 16
A+T+N+
A+T–N+ 2 3 2 7 2 1
A–T+N– 4 9 0 30 24 1
A–T–N+
A–T+N+

CN, Cognitively normal; MCI, Mild cognitive impairment; AD,
Alzheimer’s disease; A, Aggregated amyloid-�; T, Aggregated tau;
N, Neurodegeneration.

as summarized in Table 2. The study participants665

were categorized according to their biomarker signa-666

ture and cognitive stage. The total number of subjects667

falling under each category is reported in Table 6. The668

numbers are reported for two sets of cut-points:{1.11,669

1.32, 2.57} and {1.11, 1.19, 2.69} for {amyloid670

SUVRs, tau SUVRs, and MRI cortical thickness},671

respectively. The former set has a larger cut-point672

for tau and a smaller cut-point for MRI (confident673

scenario, resulting in less positive cases) compared674

to the second set (conservative scenario, with more675

positive cases). Based on this table, the inconsis-676

tencies between the neuropathologic biomarkers and677

clinical diagnosis can be investigated specifically in678

challenging categories such as normal AD biomark-679

ers with a dementia diagnosis and preclinical AD680

with cognitively unimpaired diagnosis. In the studied681

cohort, the “normal AD biomarker (A–T–N–) with682

an AD diagnosis” group includes 2 and 1 individuals683

based on the confident and conservative cut-points,684

respectively. Although this inconsistency between the685

biomarkers and clinical diagnosis might be partially686

caused by inaccurate binary biomarker grouping, it687

Table 7
Grouping the study participants into AT(N) biomarkers categories
and their corresponding clinical and predicted cognitive stage (CN,
MCI, and AD). The AT(N) groups are defined using confident cut-
points {1.11, 1.32, 2.57} for amyloid SUVRs, tau SUVRs, and
MRI cortical thickness, respectively. For the normal biomarker
profile (A–T–N–), more subjects were predicted as the CN class
(compared to the clinical diagnosis) due to the dominance of CN
subjects in this specific AT(N) group. The Alzheimer’s patho-
logical change group (A+T–N–) experienced a similar but less
severe situation than the previous group. In the preclinical AD
group (A+T+N– and A+T+N+), all three cognitive classes include
a significant portion of subjects for both clinical and predicted

cases

Clinical Predicted
cognitive cognitive

stage stage

CN MCI AD CN MCI AD

A–T–N– 137 52 4 160 33 0
A+T–N– 66 20 8 71 17 6
A+T+N– 13 24 18 15 25 15
A+T+N+
A+T–N+ 2 4 3 3 2 4
A–T+N– 5 9 0 6 8 0
A–T–N+
A–T+N+

CN, Cognitively normal; MCI, Mild cognitive impairment; AD,
Alzheimer’s disease; A, Aggregated amyloid-�; T, Aggregated tau;
N, Neurodegeneration.

can potentially be one of the contributors to mis- 688

classification. Another controversial case is related 689

to individuals with “preclinical Alzheimer’s disease 690

biomarkers” (A+T+N– and A+T+N+). As seen in 691

Table 6, this group has a considerable number of 692

subjects in all three cognitive stages making the clas- 693

sification task even more challenging. 694

To further investigate this scenario, we recon- 695

structed the AT(N) biomarker-cognition table for the 696

predicted cognitive stage aside from the clinically 697

diagnosed cognitive stage. Table 7 represents the 698

results for the clinical and predicted diagnosis side 699

by side. It should be noted that here we used a differ- 700

ent case study than Table 6. As can be seen from the 701

results, for the normal biomarker group (A–T–N–), 702

all dementia subjects and some of the MCI subjects 703

were misclassified as the CN group (false negative). 704

A less severe outcome is seen for the AD patho- 705

logical change group (A+T–N–), where some AD 706

and MCI subjects were misclassified as CN. As for 707

the challenging preclinical AD group (A+T+N– and 708

A+T+N+), a clear conclusion cannot be drawn solely 709

from Table 7. Thus, a classification confusion matrix 710

was constructed for the specific case of preclinical 711

AD, as shown in Table 8. From this table, it is clear 712

that many CN subjects were misclassified as MCI, 713
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Table 8
Classification confusion matrix for the AT(N) preclinical AD group
(biomarker profiles A+T+N– and A+T+N+). For the CN class
(true label), a significant portion of subjects (6 out of 13) was
classified (predicted label) as MCI and AD, which can be related
to those preclinical AD individuals that have not yet advanced
to AD. On the other hand, a considerable number of AD subjects
(true label) were classified (predicted label) as MCI and CN, which
could belong to those AD subtypes with a different pattern and less
severe biomarker levels. Overall, the classification scores for this
preclinical AD category are: accuracy = 56.4%, precision = 57.3%,

recall = 56.4%, f1-score = 55.5%

True/Pred CN MCI AD

CN 7 4 2
MCI 7 14 3
AD 1 7 10

and a large number of AD subjects were misclassified714

as MCI.715

DISCUSSION716

The objective of this research was to determine the717

cognitive stage using neuroimaging biomarkers and718

analyze the dependencies between biomarker pro-719

files and the cognitive stage. For the model variables,720

including amyloid and tau PET SUVR values and721

cortical thickness, a trade-off was made between vari-722

ables relevance and redundancy using an information723

theory-based metric. The advantage of the proposed724

approach is to incorporate the effect of features com-725

plementarity and redundancy to maximize the total726

amount of information in the feature set. It is impor-727

tant to note that the redundancy part should not be728

overweighted since highly relevant features can also729

be partially redundant. This situation is seen in Fig. 5730

for larger values of the coefficient �, where feature731

relevance is sacrificed for even a minor redundancy.732

By incorporating a moderate redundancy coefficient733

into the equations, for tau SUVRs, entorhinal and734

amygdala were among the top regions for all stages735

of AD, with amygdala being most informative for736

the CN/MCI case. Abnormal tau deposition in these737

regions is known as a biomarker for preclinical AD by738

previous studies [18, 20, 44]. It is reported in the liter-739

ature that amygdala shows early atrophy independent740

of amyloid deposition, and it might be related to neu-741

rofibrillary tangles instead [45, 46]. Other prominent742

regions include pallidum and hippocampus based743

on tau PET for CN/MCI case, and inferior parietal,744

inferior temporal, precuneus, and precentral for the745

MCI/AD case. It is stated in [47–49] that tau bur-746

den in these specific ROIs is correlated with cognitive747

decline. On the other hand, for amyloid PET SUVRs,748

frontal pole for all stages, and inferior lateral ventri- 749

cle for the CN/MCI case, and medial orbitofrontal, 750

pars triangularis, and rostral anterior cingulate for 751

the MCI/AD case are among the more prominent 752

variables. These findings are consistent with previous 753

studies [50–52]. 754

By incorporating the effect of redundancy and syn- 755

ergy, some features experienced a score change. For 756

instance, the score of frontal pole amyloid SUVR 757

(but not tau SUVR) for the early stage increased 758

significantly, so that this region is considered a com- 759

plementary variable for the classification task. This 760

is in agreement with the literature [45, 53], where 761

it is reported that the frontal pole shows early amy- 762

loid deposition while atrophy and tau deposition are 763

later events. Some amyloid and tau SUVR values 764

that experienced a boost in their score include the 765

hippocampus, inferior lateral ventricle, and lateral 766

ventricle, which are known to be critical for AD diag- 767

nosis in previous studies. On the other hand, a score 768

drop was seen in some of the tau SUVRs, including 769

fusiform, inferior parietal, inferior temporal, isthmus 770

cingulate, orbitofrontal, middle temporal, precuneus, 771

and bankssts. A lower score does not necessarily dis- 772

qualify a feature. Instead, the model tries to replace 773

the most redundant features with a possibly less 774

relevant but complementary one so that additional 775

information is added to the analysis. 776

In the classification part, tau PET modality pro- 777

duced more accurate results than amyloid PET and 778

MRI modalities, specifically in CN/MCI classifica- 779

tion (early stage). On the other hand, multimodal 780

scenarios have achieved the highest F1-scores in most 781

cases, especially in the early stages of the disease. 782

Feature selection was most effective in the SVC case, 783

making SVC achieve higher scores compared to RF 784

and XGB in many cases. This was expected as RF 785

and XGB have internal feature selection, with less 786

room for improvement. In retrospect, these findings 787

suggest that the classification of high-dimensional 788

multimodal datasets would be most accurate when 789

feature selection is carried out most effectively, with 790

the relevance of each feature quantified through a 791

ranking score metric as proposed in this study. When 792

such measures are taken, reducing the dimensional- 793

ity of the feature space can be accomplished while 794

still maintaining high accuracy in the classification 795

results. More specifically, Fig. 9d shows that the F1- 796

score of the multimodal case with feature selection is 797

up to 5% higher than other scenarios. 798

One of the major challenges in the AD diag- 799

nosis is the heterogeneity of the disease related 800
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to the AD subtypes (hippocampal-sparing, limbic-801

predominant, typical AD). It is shown that the AD802

risk factors and protective factors have a meaning-803

ful variance among the AD subtypes [54]. As seen in804

the Result section, the inclusion of these covariates805

into the model variables could improve the classi-806

fication scores. This can be explained through the807

characteristics of different subtypes and the variation808

of risk factors among them. Typical AD subtype cases809

experience more severe pathology compared to other810

subtypes, while limbic-predominant cases have more811

typical biomarkers than hippocampal-sparing sub-812

jects. Since typical AD is more prevalent than other813

subtypes, if the classification model only relies on814

biomarkers, it might be biased toward this group and815

yields false-negative results for other AD subtypes as816

they have less severe biomarkers and are less preva-817

lent. Therefore, these other categories of subjects818

with minimal atrophy and non-typical biomarkers819

might be misclassified as CN and MCI classes. At820

this stage, the risk and protective factors can com-821

plement the biomarkers and help to correctly classify822

these subtypes as the AD group and thus alleviate the823

heterogeneity issue. Concerning the risk factors, sub-824

jects with typical and limbic-predominant AD tend825

to be older than those with hippocampal-sparing AD.826

On the other hand, the hippocampal-sparing category827

includes fewer APOE4 carriers and highly educated828

individuals compared to other groups. In terms of829

gender, females are more frequent in the limbic-830

predominant group.831

As described in this study, another challenge in the832

classification problems is biomarker insufficiency.833

This may result in a disconnection between biomark-834

ers and clinical diagnosis to some extent. Studies835

revealed that almost 30% of clinically unimpaired836

elderly participants have AD in postmortem exam-837

inations or have abnormal amyloid deposition [24,838

43]. In our study, in one of the scenarios (Table 6),839

6.5%–16% (9–22 individuals) of the CN group840

have preclinical AD with abnormal amyloid and tau841

pathology for the two cut-point levels, as seen in842

Table 6. It is anticipated that the classification model843

classifies some of these individuals as MCI or AD844

groups since both AD-specific biomarkers (amyloid845

and tau) are abnormal in this case (false positive).846

This was confirmed in Table 8, where almost half847

of the CN subjects were misclassified as MCI and848

AD. Moreover, for the same preclinical AD group,849

a large number of AD subjects were misclassified.850

This can be explained by the heterogeneity of AD,851

where some AD subjects with less severe biomarkers852

are predicted by the model as non-AD and vice versa. 853

The results proved the preclinical AD subjects to be 854

one of the most challenging groups for the model, 855

with a classification accuracy of 56%, which is lower 856

than the overall accuracy of 65% for all subjects of 857

the scenario presented in Table 7. These outcomes 858

were expected since the preclinical biomarker pro- 859

file includes subjects in all three cognitive stages 860

which is due to the heterogeneity of the disease 861

and the lack of sufficient biomarkers required for a 862

more accurate delineation of the classes. Similarly, 863

the “normal AD biomarker” (A–T–N–) and “non- 864

Alzheimer’s pathologic change” (A–) groups are also 865

susceptible to misclassification as they have non-AD- 866

specific biomarkers, but some are labeled as MCI (AD 867

prodromal stage) and AD in the ADNI dataset. It has 868

been shown in other studies that 10% to 30% of clini- 869

cally diagnosed AD cases do not have AD at autopsy 870

or have normal AD biomarkers [24, 43]. In the ADNI 871

cohort used in our study, 10–20% of subjects were 872

detected with the described condition. In the clas- 873

sification process, the normal biomarkers are likely 874

to predict a cognitively normal stage rather than AD 875

(false negative). These results can be explained by the 876

fact that the clinical diagnosis and cognitive labeling 877

practices are generally based on symptoms and are 878

independent of the biomarkers. The outcomes reveal 879

the insufficiency of the available biomarkers in mak- 880

ing an accurate prediction of the clinically defined 881

cognitive stage. 882

Since the biomarkers might not be accessible in 883

many situations, clinical diagnosis is made solely 884

based on symptoms as ascertained through cognitive 885

tests. The AT(N) biomarker framework establishes 886

a biomarker-based definition of AD and emphasizes 887

the independence of the biological and clinical def- 888

initions of AD, yet it tries to clarify the interaction 889

between the two. This can be valuable for in-depth 890

research purposes as well as personalized medicine. 891

The AT(N) framework shows that the cognitive stage 892

cannot be entirely determined through the AT(N) 893

biomarkers since any particular biomarker profile 894

can belong to any cognitive stage. The fact that a 895

wide range of biomarker profiles can define a specific 896

cognitive stage is due to the heterogeneity of the dis- 897

ease, which can be explained by the subtypes of AD 898

(hippocampal-sparing, limbic-predominant, typical 899

AD). Different subtypes have similar amyloid loads; 900

however, tau and neurodegeneration pathology and 901

also concomitant non-AD pathologies vary across 902

subtypes. Also, other contributing factors to differen- 903

tiate between AD subtypes include risk factors (age, 904
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gender, education, and APOE) and protective factors905

(cognitive reserve, brain resilience, and brain resis-906

tance). Incorporation of these factors in the context907

of the AT(N) system can be a step toward a more908

in-depth analysis of the computer-aided diagnosis of909

AD and augmenting the research prospects for more910

effectual personalized medicine.911

One of the limiting factors for our analysis was912

the considerable amount of missing data, specifically913

for the tau PET modality. This issue is more critical914

when we are interested in subjects with all modal-915

ities available, which is a requirement for having a916

fair comparison between single modality scenarios.917

Also, the study could be more valuable if longitudi-918

nal data were available so that the effect of biomarker919

change through time could be considered. Longi-920

tudinal tau PET data is very limited in the ADNI921

dataset since tau PET is a relatively new technology,922

and its longitudinal data collection and processing923

is still in progress. Also, the missing data issue is924

even more severe for the longitudinal data. More-925

over, in the data collection process, a time difference926

may exist between capturing the MRI and PET scans927

for some participants. This time lag between modali-928

ties is inevitable in many situations in practice. While929

small time-lags might be neglected in some studies,930

more significant delays can be included in the analy-931

sis with appropriate considerations. In our study, we932

have not integrated this variable in our analysis due933

to the lack of such information for some of the par-934

ticipants, which would result in additional missing935

values for the dataset. In this study, we conducted936

a cross-sectional study and handled the missing val-937

ues by mean-value imputation and by making use938

of models that are more robust to missing values.939

Moreover, using the AT(N) analysis, the intra-class940

biomarker variance was studied so that the contri-941

bution of biomarker shortage on the classification942

performance was determined.943
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[17] Ittner L, Götz J (2010) Amyloid-� and tau — a toxic pas de1032

deux in Alzheimer’s disease. Nat Rev Neurosci 12, 67-72.1033

[18] Leuzy A, Chiotis K, Lemoine L, Gillberg P, Almkvist O,1034

Rodriguez-Vieitez E, Nordberg A (2019) Tau PET imaging1035

in neurodegenerative tauopathies—still a challenge. Molr1036

Psychiatry 24, 1112-1134.1037

[19] De Wolf F, Ghanbari M, Licher S, McRae-McKee K, Gras1038

L, Weverling G, Wermeling P, Sedaghat S, Ikram M, Waziry1039

R, Koudstaal W, Klap J, Kostense S, Hofman A, Anderson1040

R, Goudsmit J, Ikram M (2020) Plasma tau, neurofilament1041

light chain and amyloid-� levels and risk of dementia; a1042

population-based cohort study. Brain 143, 1220-1232.1043
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